

LIFE CYCLE ASSESSMENT

PRODUCT			Nu-Film [®] P adjuvant is a superior deposition, spreader, and sticker adjuvant with non-ionic properties based on proprietary Miller technology containing Pinolene [®] terpene polymer. Once applied, Nu-Film P begins to polymerize on the leaf surface forming a soft elastic film. This film reduces the effects of rainfall erosion, volatility, and ultraviolet (UV) degradation on agrochemical spray deposits.			
	BENEFIT	BENEFIT	BEREFIT	BEREFIT		
SOFT ELASTIC FILM FORMATION OVER 7-10 DAYS	UDD REDUCTION IN VOLATILIZATION	IMPROVES CONTACT, WETTING, AND ADHESION OF AGROCHEMICALS ONTO PLANT SURFACE	MAXIMIZES THE EFFECTIVE LIFE OF AN AGROCHEMICAL AFTER APPLICATION	SHIFT FROM HIGH DOSE APPLICATION TO LOW DOSE		
OUR COMMITM TO SUSTAINABI WHAT IS A LI CYCLE ASSESSM	FE Life c comp impair impair raw n (crad	e environment. Our actions nitment to long-term, susta nitment to sustainable proc de transparency to our cust cycle assessment (LCA) is a prehensively quantify and in cts of the entire life cycle o naterial extraction to the ga le-to-gate) or to disposal of	are guided by the Huber inable business performa duct development, we con tomers and to better und n analytical tool used to terpret the environmenta of a product or system fro ate of the manufacturing if the product (cradle-to-gr	Principles and help us nce. As part of Huber E nducted a Life Cycle Ass erstand and improve pr I m site rave).	deliver on our ngineered Material's sessment (LCA) to oduct performance.	
	Miller addit Nu-Fil pestic the fi phase consi cradli impa to fin	r purchases pinene and fur ional raw materials to yield Im P is then sold to farmers cide of their choice to be a gure to the right, impacts r e up to the production and dered the cradle-to-gate im e-to-grave impacts include cts as well as impacts asso al customer and of the use	ther blends and mixes I the Nu-Film P product. s who mix Nu-Film P with pplied to a crop. As show neasuring the raw materi packaging of Nu-Film P i pacts of this study. The the Nu-Film P cradle-to-ga iciated with transportatio e of the product.	the vn in al s nte n 13	LIFE CYCLE 2 PROTUCTION IS CRADLE-TO-GRAVE	
LIFE CYCLE Study informa	A crac to der NTION was 2 one a the Cl	dle-to-grave life cycle assessme nonstrate the study was done 021 data. The functional unit cre of land. The declared unit ML 2000 methodology. Contac	ent was conducted and wen in accordance with ISO 14 utilized for the study is the is one gallon of product. T ct HEM.Sustainability@hube	t under an independent tl 040/14044. The period o applied amount of produ he LCA Software utilized w r.com for any questions re	hird-party critical review f data used for the study ct for the coverage of as SimaPro v9.1.1 using elated to this fact sheet.	

LIFE CYCLE ASSESSMENT

PRODUCT

LIFE CYCLE IMPACTS

The tables below include the cradle-to-grave impacts of Nu-Film P with the different pesticides selected for the scope of this study. As tank mixes and applications vary depending on type of crop, geography, weather conditions, and many other factors, a low and high use rate was assumed for each pesticide. Due to the complexity of use rates, it is essential for the user to always read and follow the label.

Nu-Film[®] P adjuvant is a superior deposition, spreader, and

sticker adjuvant with non-ionic properties based on proprietary Miller technology containing Pinolene® terpene polymer.

TABLE 1:

CRADLE-TO-GATE IMPACTS OF ONE GALLON

*Denotes that the number is greater than zero but less than 4 decimals (i.e., 0.00001)

IMPACT CATEGORY	UNIT	CRADLE-TO-GATE
Global warming (GWP100a)	kg CO2 eq	10.1097
Abiotic depletion	kg Sb eq	>0*
Abiotic depletion (fossil fuels)	MJ	160.5598
Photochemical oxidation	kg C2H4 eq	0.0033
Acidification	kg SO2 eq	0.0538
Eutrophication	kg PO4 eq	0.0482
Ozone layer depletion (ODP)	kg CFC-11 eq	>0

ГΛ	D		с.	- 0	
I A	D	L	с.	_	Ξ.
	-	-	-	_	

CRADLE-TO-GRAVE IMPACTS WITH LOW USE RATE OF DIFFERENT PESTICIDES (PER ACRE)

Note I: The following low use rates were assumed; 0.27 kg/acre of chlorothalonil, 0.47 kg/acre of dichlorophenol, 0.37 kg/acre of glyphosate, 0.01 kg/acre of pyrethroid, and 1.13 kg/acre of captan.

Note II: An average of 0.22 kg/acre of NFP for each tank mix was assumed.

TABLE 3:

CRADLE-TO-GRAVE IMPACTS OF WITH HIGH USE RATE OF DIFFERENT PESTICIDES (PER ACRE)

Note 1: The following high use rates were assumed; 2.04 Kg/acre of chlorothalonil, 1.88 Kg/acre of dichlorophenol, 3.53 Kg/acre of glyphosate, 0.02 kg/acre of pyrethroid, and 2.27 Kg/acre of captan. Note 1: In swerzen of fi 22 kn/acre of NP

Note II: An average of 0.22 kg/acre of NFP for each tank mix was assumed.

MPACT CATEGORY	UNIT	CHLOROTHALONIL	DICHLOROPHENOL	GLYPHOSATE	PYRETHROID	CAPTAN
Global warming (GWP100a)	kg CO2 eq	1.7873	2.5475	4.8197	0.8799	5.1743
Abiotic depletion	kg Sb eq	>0	>0	>0	>0	>0
Abiotic depletion (fossil fuels)	MJ	28.0190	43.6173	67.2087	13.7719	88.4555
Photochemical oxidation	kg C2H4 eq	0.0007	0.0011	0.0021	0.0003	0.0016
Acidification	kg SO2 eq	0.0084	0.0117	0.0223	0.0048	0.0253
Eutrophication	kg PO4 eq	0.0050	0.0062	0.0233	0.0035	0.0093
Dzone laver depletion (ODP)	ka CFC-11 ea	>0	>0	>0	>0	>0

IMPACT CATEGORY	UNIT	CHLOROTHALONIL	DICHLOROPHENOL	GLYPHOSATE	PYRETHROID	CAPTAN
Global warming (GWP100a)	kg CO2 eq	8.8111	8.0416	39.8668	1.0437	9.6718
Abiotic depletion	kg Sb eq	0.0001	0.0001	0.0005	0.0001	0.0001
Abiotic depletion (fossil fuels)	MJ	137.0609	140.2946	543.9367	16.1547	166.2038
Photochemical oxidation	kg C2H4 eq	0.0038	0.0035	0.0184	0.0004	0.0030
Acidification	kg SO2 eq	0.0368	0.0344	0.1777	0.0055	0.0467
Eutrophication	kg PO4 eq	0.0159	0.0148	0.1942	0.0037	0.0153
Ozone layer depletion (ODP)	kg CFC-11 eq	>0	>0	>0	>0	>0

The following products are not included in the scope of this LCA however are assumed to have similar cradle-to-gate environmental footprints due to similar raw materials, process, and energy use: Nu-Film[®] 17 Adjuvant, Sustain[®] Adjuvant, Vapor Gard[®] Crop Production Aid, Pod Ceal[®] Crop Production Aid, and Spur Shield[®] Crop Production Aid. All mentioned products are Pinolene[®] terpene polymer based products and use rates may vary.